

Welcome to pyrocksdb’s documentation!

Overview

Python bindings to the C++ interface of http://rocksdb.org/ using cython:

import rocksdb
db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))
db.put(b"a", b"b")
print db.get(b"a")

Tested with python2.7 and python3.4 and RocksDB version 3.12

	Instructions how to install
	Building rocksdb

	Building pyrocksdb

	Tutorial
	Open

	About Bytes And Unicode

	Access

	Iteration

	Snapshots

	MergeOperator

	PrefixExtractor

	Backup And Restore

	Change Memtable Or SST Implementations

	Change Compaction Style

	Iterate Over WriteBatch

	API
	Options

	Database

	Interfaces

	Backup

	Changelog
	Version 0.5

	Version 0.4

	Version 0.3

	Version 0.2

	Version 0.1

Contributing

Source can be found on github [https://github.com/stephan-hof/pyrocksdb].
Feel free to fork and send pull-requests or create issues on the
github issue tracker [https://github.com/stephan-hof/pyrocksdb/issues]

RoadMap/TODO

No plans so far. Please submit wishes to the github issues.

Indices and tables

	Index

	Module Index

	Search Page

Installing

Building rocksdb

Briefly describes how to build rocksdb under an ordinary debian/ubuntu.
For more details consider https://github.com/facebook/rocksdb/blob/master/INSTALL.md

apt-get install build-essential
apt-get install libsnappy-dev zlib1g-dev libbz2-dev libgflags-dev
git clone https://github.com/facebook/rocksdb.git
cd rocksdb
make shared_lib

Systemwide rocksdb

The following command installs the shared library in /usr/lib/ and the
header files in /usr/include/rocksdb/:

make install-shared INSTALL_PATH=/usr

To uninstall use:

make uninstall INSTALL_PATH=/usr

Local rocksdb

If you don’t like the system wide installation, or you don’t have the
permissions, it is possible to set the following environment variables.
These varialbes are picked up by the compiler, linker and loader

export CPLUS_INCLUDE_PATH=${CPLUS_INCLUDE_PATH}:`pwd`/include
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:`pwd`
export LIBRARY_PATH=${LIBRARY_PATH}:`pwd`

Building pyrocksdb

apt-get install python-virtualenv python-dev
virtualenv pyrocks_test
cd pyrocks_test
. bin/active
pip install "Cython>=0.20"
pip install git+git://github.com/stephan-hof/pyrocksdb.git

Basic Usage of pyrocksdb

Open

The most basic open call is

import rocksdb

db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))

A more production ready open can look like this

import rocksdb

opts = rocksdb.Options()
opts.create_if_missing = True
opts.max_open_files = 300000
opts.write_buffer_size = 67108864
opts.max_write_buffer_number = 3
opts.target_file_size_base = 67108864

opts.table_factory = rocksdb.BlockBasedTableFactory(
 filter_policy=rocksdb.BloomFilterPolicy(10),
 block_cache=rocksdb.LRUCache(2 * (1024 ** 3)),
 block_cache_compressed=rocksdb.LRUCache(500 * (1024 ** 2)))

db = rocksdb.DB("test.db", opts)

It assings a cache of 2.5G, uses a bloom filter for faster lookups and keeps
more data (64 MB) in memory before writting a .sst file.

About Bytes And Unicode

RocksDB stores all data as uninterpreted byte strings.
pyrocksdb behaves the same and uses nearly everywhere byte strings too.
In python2 this is the str type. In python3 the bytes type.
Since the default string type for string literals differs between python 2 and 3,
it is strongly recommended to use an explicit b prefix for all byte string
literals in both python2 and python3 code.
For example b'this is a byte string'. This avoids ambiguity and ensures
that your code keeps working as intended if you switch between python2 and python3.

The only place where you can pass unicode objects are filesytem paths like

	Directory name of the database itself rocksdb.DB.__init__()

	rocksdb.Options.wal_dir

	rocksdb.Options.db_log_dir

To encode this path name, sys.getfilesystemencoding() encoding is used.

Access

Store, Get, Delete is straight forward

Store
db.put(b"key", b"value")

Get
db.get(b"key")

Delete
db.delete(b"key")

It is also possible to gather modifications and
apply them in a single operation

batch = rocksdb.WriteBatch()
batch.put(b"key", b"v1")
batch.delete(b"key")
batch.put(b"key", b"v2")
batch.put(b"key", b"v3")

db.write(batch)

Fetch of multiple values at once

db.put(b"key1", b"v1")
db.put(b"key2", b"v2")

ret = db.multi_get([b"key1", b"key2", b"key3"])

prints b"v1"
print ret[b"key1"]

prints None
print ret[b"key3"]

Iteration

Iterators behave slightly different than expected. Per default they are not
valid. So you have to call one of its seek methods first

db.put(b"key1", b"v1")
db.put(b"key2", b"v2")
db.put(b"key3", b"v3")

it = db.iterkeys()
it.seek_to_first()

prints [b'key1', b'key2', b'key3']
print list(it)

it.seek_to_last()
prints [b'key3']
print list(it)

it.seek(b'key2')
prints [b'key2', b'key3']
print list(it)

There are also methods to iterate over values/items

it = db.itervalues()
it.seek_to_first()

prints [b'v1', b'v2', b'v3']
print list(it)

it = db.iteritems()
it.seek_to_first()

prints [(b'key1', b'v1'), (b'key2, b'v2'), (b'key3', b'v3')]
print list(it)

Reversed iteration

it = db.iteritems()
it.seek_to_last()

prints [(b'key3', b'v3'), (b'key2', b'v2'), (b'key1', b'v1')]
print list(reversed(it))

Snapshots

Snapshots are nice to get a consistent view on the database

self.db.put(b"a", b"1")
self.db.put(b"b", b"2")

snapshot = self.db.snapshot()
self.db.put(b"a", b"2")
self.db.delete(b"b")

it = self.db.iteritems()
it.seek_to_first()

prints {b'a': b'2'}
print dict(it)

it = self.db.iteritems(snapshot=snapshot)
it.seek_to_first()

prints {b'a': b'1', b'b': b'2'}
print dict(it)

MergeOperator

Merge operators are useful for efficient read-modify-write operations.
For more details see Merge Operator [https://github.com/facebook/rocksdb/wiki/Merge-Operator]

A python merge operator must either implement the
rocksdb.interfaces.AssociativeMergeOperator or
rocksdb.interfaces.MergeOperator interface.

The following example python merge operator implements a counter

class AssocCounter(rocksdb.interfaces.AssociativeMergeOperator):
 def merge(self, key, existing_value, value):
 if existing_value:
 s = int(existing_value) + int(value)
 return (True, str(s).encode('ascii'))
 return (True, value)

 def name(self):
 return b'AssocCounter'

opts = rocksdb.Options()
opts.create_if_missing = True
opts.merge_operator = AssocCounter()
db = rocksdb.DB('test.db', opts)

db.merge(b"a", b"1")
db.merge(b"a", b"1")

prints b'2'
print db.get(b"a")

PrefixExtractor

According to Prefix API [https://github.com/facebook/rocksdb/wiki/Proposal-for-prefix-API]
a prefix_extractor can reduce IO for scans within a prefix range.
A python prefix extractor must implement the rocksdb.interfaces.SliceTransform interface.

The following example presents a prefix extractor of a static size.
So always the first 5 bytes are used as the prefix

class StaticPrefix(rocksdb.interfaces.SliceTransform):
 def name(self):
 return b'static'

 def transform(self, src):
 return (0, 5)

 def in_domain(self, src):
 return len(src) >= 5

 def in_range(self, dst):
 return len(dst) == 5

opts = rocksdb.Options()
opts.create_if_missing=True
opts.prefix_extractor = StaticPrefix()

db = rocksdb.DB('test.db', opts)

db.put(b'00001.x', b'x')
db.put(b'00001.y', b'y')
db.put(b'00001.z', b'z')

db.put(b'00002.x', b'x')
db.put(b'00002.y', b'y')
db.put(b'00002.z', b'z')

db.put(b'00003.x', b'x')
db.put(b'00003.y', b'y')
db.put(b'00003.z', b'z')

prefix = b'00002'

it = db.iteritems()
it.seek(prefix)

prints {b'00002.z': b'z', b'00002.y': b'y', b'00002.x': b'x'}
print dict(itertools.takewhile(lambda item: item[0].startswith(prefix), it))

Backup And Restore

Backup and Restore is done with a separate rocksdb.BackupEngine object.

A backup can only be created on a living database object.

import rocksdb

db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))
db.put(b'a', b'v1')
db.put(b'b', b'v2')
db.put(b'c', b'v3')

Backup is created like this.
You can choose any path for the backup destination except the db path itself.
If flush_before_backup is True the current memtable is flushed to disk
before backup.

backup = rocksdb.BackupEngine("test.db/backups")
backup.create_backup(db, flush_before_backup=True)

Restore is done like this.
The two arguments are the db_dir and wal_dir, which are mostly the same.

backup = rocksdb.BackupEngine("test.db/backups")
backup.restore_latest_backup("test.db", "test.db")

Change Memtable Or SST Implementations

As noted here MemtableFactories, RocksDB offers different implementations for the memtable
representation. Per default rocksdb.SkipListMemtableFactory is used,
but changing it to a different one is veary easy.

Here is an example for HashSkipList-MemtableFactory.
Keep in mind: To use the hashed based MemtableFactories you must set
rocksdb.Options.prefix_extractor.
In this example all keys have a static prefix of len 5.

class StaticPrefix(rocksdb.interfaces.SliceTransform):
 def name(self):
 return b'static'

 def transform(self, src):
 return (0, 5)

 def in_domain(self, src):
 return len(src) >= 5

 def in_range(self, dst):
 return len(dst) == 5

opts = rocksdb.Options()
opts.prefix_extractor = StaticPrefix()
opts.memtable_factory = rocksdb.HashSkipListMemtableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)
db.put(b'00001.x', b'x')
db.put(b'00001.y', b'y')
db.put(b'00002.x', b'x')

For initial bulk loads the Vector-MemtableFactory makes sense.

opts = rocksdb.Options()
opts.memtable_factory = rocksdb.VectorMemtableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)

As noted here TableFactories, it is also possible to change the
representation of the final data files.
Here is an example how to use a ‘PlainTable’.

opts = rocksdb.Options()
opts.table_factory = rocksdb.PlainTableFactory()
opts.create_if_missing = True

db = rocksdb.DB("test.db", opts)

Change Compaction Style

RocksDB has a compaction algorithm called universal. This style typically
results in lower write amplification but higher space amplification than
Level Style Compaction. See here for more details,
https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide#multi-threaded-compactions

Here is an example to switch to universal style compaction.

opts = rocksdb.Options()
opts.compaction_style = "universal"
opts.compaction_options_universal = {"min_merge_width": 3}

See here for more options on universal style compaction,
rocksdb.Options.compaction_options_universal

Iterate Over WriteBatch

In same cases you need to know, what operations happened on a WriteBatch.
The pyrocksdb WriteBatch supports the iterator protocol, see this example.

batch = rocksdb.WriteBatch()
batch.put(b"key1", b"v1")
batch.delete(b'a')
batch.merge(b'xxx', b'value')

for op, key, value in batch:
 print op, key, value

prints the following three lines
Put key1 v1
Delete a
Merge xxx value

Python driver for RocksDB

	Options
	Options object

	CompressionTypes

	BytewiseComparator

	BloomFilterPolicy

	LRUCache

	TableFactories

	MemtableFactories

	Database
	Database object

	Iterator

	Snapshot

	WriteBatch

	WriteBatchIterator

	Repair DB

	Errors

	Interfaces
	Comparator

	Merge Operator
	AssociativeMergeOperator

	MergeOperator

	FilterPolicy

	SliceTransform

	Backup
	BackupEngine

Options creation

Options object

	
class rocksdb.Options

	
Important

The default values mentioned here, describe the values of the
C++ library only. This wrapper does not set any default value
itself. So as soon as the rocksdb developers change a default value
this document could be outdated. So if you really depend on a default
value, double check it with the according version of the C++ library.

Most recent default values should be here

https://github.com/facebook/rocksdb/blob/master/include/rocksdb/options.h

https://github.com/facebook/rocksdb/blob/master/util/options.cc

	
__init__(**kwargs)

	All options mentioned below can also be passed as keyword-arguments in
the constructor. For example:

import rocksdb

opts = rocksdb.Options(create_if_missing=True)
is the same as
opts = rocksdb.Options()
opts.create_if_missing = True

	
create_if_missing

	If True, the database will be created if it is missing.

Type: bool

Default: False

	
error_if_exists

	If True, an error is raised if the database already exists.

Type: bool

Default: False

	
paranoid_checks

	If True, the implementation will do aggressive checking of the
data it is processing and will stop early if it detects any
errors. This may have unforeseen ramifications: for example, a
corruption of one DB entry may cause a large number of entries to
become unreadable or for the entire DB to become unopenable.
If any of the writes to the database fails (Put, Delete, Merge, Write),
the database will switch to read-only mode and fail all other
Write operations.

Type: bool

Default: True

	
write_buffer_size

	Amount of data to build up in memory (backed by an unsorted log
on disk) before converting to a sorted on-disk file.

Larger values increase performance, especially during bulk loads.
Up to max_write_buffer_number write buffers may be held in memory
at the same time, so you may wish to adjust this parameter to control
memory usage. Also, a larger write buffer will result in a longer recovery
time the next time the database is opened.

Type: int

Default: 4194304

	
max_write_buffer_number

	The maximum number of write buffers that are built up in memory.
The default is 2, so that when 1 write buffer is being flushed to
storage, new writes can continue to the other write buffer.

Type: int

Default: 2

	
min_write_buffer_number_to_merge

	The minimum number of write buffers that will be merged together
before writing to storage. If set to 1, then
all write buffers are fushed to L0 as individual files and this increases
read amplification because a get request has to check in all of these
files. Also, an in-memory merge may result in writing lesser
data to storage if there are duplicate records in each of these
individual write buffers.

Type: int

Default: 1

	
max_open_files

	Number of open files that can be used by the DB. You may need to
increase this if your database has a large working set. Value -1 means
files opened are always kept open. You can estimate number of
files based on target_file_size_base and target_file_size_multiplier
for level-based compaction.
For universal-style compaction, you can usually set it to -1.

Type: int

Default: 5000

	
compression

	Compress blocks using the specified compression algorithm.
This parameter can be changed dynamically.

Type: Member of rocksdb.CompressionType

Default: rocksdb.CompressionType.snappy_compression

	
num_levels

	Number of levels for this database

Type: int

Default: 7

	
level0_file_num_compaction_trigger

	Number of files to trigger level-0 compaction. A value <0 means that
level-0 compaction will not be triggered by number of files at all.

Type: int

Default: 4

	
level0_slowdown_writes_trigger

	Soft limit on number of level-0 files. We start slowing down writes at this
point. A value <0 means that no writing slow down will be triggered by
number of files in level-0.

Type: int

Default: 20

	
level0_stop_writes_trigger

	Maximum number of level-0 files. We stop writes at this point.

Type: int

Default: 24

	
max_mem_compaction_level

	Maximum level to which a new compacted memtable is pushed if it
does not create overlap. We try to push to level 2 to avoid the
relatively expensive level 0=>1 compactions and to avoid some
expensive manifest file operations. We do not push all the way to
the largest level since that can generate a lot of wasted disk
space if the same key space is being repeatedly overwritten.

Type: int

Default: 2

	
target_file_size_base

	
Target file size for compaction.

target_file_size_base is per-file size for level-1.

Target file size for level L can be calculated by

target_file_size_base * (target_file_size_multiplier ^ (L-1)).

For example, if target_file_size_base is 2MB and
target_file_size_multiplier is 10, then each file on level-1 will
be 2MB, and each file on level 2 will be 20MB,
and each file on level-3 will be 200MB.

Type: int

Default: 2097152

	
target_file_size_multiplier

	
by default target_file_size_multiplier is 1, which means

by default files in different levels will have similar size.

Type: int

Default: 1

	
max_bytes_for_level_base

	Control maximum total data size for a level.
max_bytes_for_level_base is the max total for level-1.
Maximum number of bytes for level L can be calculated as
(max_bytes_for_level_base) * (max_bytes_for_level_multiplier ^ (L-1))
For example, if max_bytes_for_level_base is 20MB, and if
max_bytes_for_level_multiplier is 10, total data size for level-1
will be 20MB, total file size for level-2 will be 200MB,
and total file size for level-3 will be 2GB.

Type: int

Default: 10485760

	
max_bytes_for_level_multiplier

	See max_bytes_for_level_base

Type: int

Default: 10

	
max_bytes_for_level_multiplier_additional

	Different max-size multipliers for different levels.
These are multiplied by max_bytes_for_level_multiplier to arrive
at the max-size of each level.

Type: [int]

Default: [1, 1, 1, 1, 1, 1, 1]

	
expanded_compaction_factor

	Maximum number of bytes in all compacted files. We avoid expanding
the lower level file set of a compaction if it would make the
total compaction cover more than
(expanded_compaction_factor * targetFileSizeLevel()) many bytes.

Type: int

Default: 25

	
source_compaction_factor

	Maximum number of bytes in all source files to be compacted in a
single compaction run. We avoid picking too many files in the
source level so that we do not exceed the total source bytes
for compaction to exceed
(source_compaction_factor * targetFileSizeLevel()) many bytes.
If 1 pick maxfilesize amount of data as the source of
a compaction.

Type: int

Default: 1

	
max_grandparent_overlap_factor

	Control maximum bytes of overlaps in grandparent (i.e., level+2) before we
stop building a single file in a level->level+1 compaction.

Type: int

Default: 10

	
disable_data_sync

	If true, then the contents of data files are not synced
to stable storage. Their contents remain in the OS buffers till the
OS decides to flush them. This option is good for bulk-loading
of data. Once the bulk-loading is complete, please issue a
sync to the OS to flush all dirty buffesrs to stable storage.

Type: bool

Default: False

	
use_fsync

	If true, then every store to stable storage will issue a fsync.
If false, then every store to stable storage will issue a fdatasync.
This parameter should be set to true while storing data to
filesystem like ext3 that can lose files after a reboot.

Type: bool

Default: False

	
db_log_dir

	This specifies the info LOG dir.
If it is empty, the log files will be in the same dir as data.
If it is non empty, the log files will be in the specified dir,
and the db data dir’s absolute path will be used as the log file
name’s prefix.

Type: unicode

Default: ""

	
wal_dir

	This specifies the absolute dir path for write-ahead logs (WAL).
If it is empty, the log files will be in the same dir as data,
dbname is used as the data dir by default.
If it is non empty, the log files will be in kept the specified dir.
When destroying the db, all log files in wal_dir and the dir itself is deleted

Type: unicode

Default: ""

	
delete_obsolete_files_period_micros

	The periodicity when obsolete files get deleted. The default
value is 6 hours. The files that get out of scope by compaction
process will still get automatically delete on every compaction,
regardless of this setting

Type: int

Default: 21600000000

	
max_background_compactions

	Maximum number of concurrent background jobs, submitted to
the default LOW priority thread pool

Type: int

Default: 1

	
max_background_flushes

	Maximum number of concurrent background memtable flush jobs, submitted to
the HIGH priority thread pool.
By default, all background jobs (major compaction and memtable flush) go
to the LOW priority pool. If this option is set to a positive number,
memtable flush jobs will be submitted to the HIGH priority pool.
It is important when the same Env is shared by multiple db instances.
Without a separate pool, long running major compaction jobs could
potentially block memtable flush jobs of other db instances, leading to
unnecessary Put stalls.

Type: int

Default: 1

	
max_log_file_size

	Specify the maximal size of the info log file. If the log file
is larger than max_log_file_size, a new info log file will
be created.
If max_log_file_size == 0, all logs will be written to one
log file.

Type: int

Default: 0

	
log_file_time_to_roll

	Time for the info log file to roll (in seconds).
If specified with non-zero value, log file will be rolled
if it has been active longer than log_file_time_to_roll.
A value of 0 means disabled.

Type: int

Default: 0

	
keep_log_file_num

	Maximal info log files to be kept.

Type: int

Default: 1000

	
soft_rate_limit

	Puts are delayed 0-1 ms when any level has a compaction score that exceeds
soft_rate_limit. This is ignored when == 0.0.
CONSTRAINT: soft_rate_limit <= hard_rate_limit. If this constraint does not
hold, RocksDB will set soft_rate_limit = hard_rate_limit.
A value of 0 means disabled.

Type: float

Default: 0

	
hard_rate_limit

	Puts are delayed 1ms at a time when any level has a compaction score that
exceeds hard_rate_limit. This is ignored when <= 1.0.
A value fo 0 means disabled.

Type: float

Default: 0

	
rate_limit_delay_max_milliseconds

	Max time a put will be stalled when hard_rate_limit is enforced. If 0, then
there is no limit.

Type: int

Default: 1000

	
max_manifest_file_size

	manifest file is rolled over on reaching this limit.
The older manifest file be deleted.
The default value is MAX_INT so that roll-over does not take place.

Type: int

Default: (2**64) - 1

	
table_cache_numshardbits

	Number of shards used for table cache.

Type: int

Default: 4

	
arena_block_size

	size of one block in arena memory allocation.
If <= 0, a proper value is automatically calculated (usually 1/10 of
writer_buffer_size).

Type: int

Default: 0

	
disable_auto_compactions

	Disable automatic compactions. Manual compactions can still
be issued on this database.

Type: bool

Default: False

	
wal_ttl_seconds, wal_size_limit_mb

	The following two fields affect how archived logs will be deleted.

	If both set to 0, logs will be deleted asap and will not get into
the archive.

	If wal_ttl_seconds is 0 and wal_size_limit_mb is not 0,
WAL files will be checked every 10 min and if total size is greater
then wal_size_limit_mb, they will be deleted starting with the
earliest until size_limit is met. All empty files will be deleted.

	If wal_ttl_seconds is not 0 and wal_size_limit_mb is 0, then
WAL files will be checked every wal_ttl_secondsi / 2 and those that
are older than wal_ttl_seconds will be deleted.

	If both are not 0, WAL files will be checked every 10 min and both
checks will be performed with ttl being first.

Type: int

Default: 0

	
manifest_preallocation_size

	Number of bytes to preallocate (via fallocate) the manifest
files. Default is 4mb, which is reasonable to reduce random IO
as well as prevent overallocation for mounts that preallocate
large amounts of data (such as xfs’s allocsize option).

Type: int

Default: 4194304

	
purge_redundant_kvs_while_flush

	Purge duplicate/deleted keys when a memtable is flushed to storage.

Type: bool

Default: True

	
allow_os_buffer

	Data being read from file storage may be buffered in the OS

Type: bool

Default: True

	
allow_mmap_reads

	Allow the OS to mmap file for reading sst tables

Type: bool

Default: True

	
allow_mmap_writes

	Allow the OS to mmap file for writing

Type: bool

Default: False

	
is_fd_close_on_exec

	Disable child process inherit open files

Type: bool

Default: True

	
skip_log_error_on_recovery

	Skip log corruption error on recovery
(If client is ok with losing most recent changes)

Type: bool

Default: False

	
stats_dump_period_sec

	If not zero, dump rocksdb.stats to LOG every stats_dump_period_sec

Type: int

Default: 3600

	
advise_random_on_open

	If set true, will hint the underlying file system that the file
access pattern is random, when a sst file is opened.

Type: bool

Default: True

	
use_adaptive_mutex

	Use adaptive mutex, which spins in the user space before resorting
to kernel. This could reduce context switch when the mutex is not
heavily contended. However, if the mutex is hot, we could end up
wasting spin time.

Type: bool

Default: False

	
bytes_per_sync

	Allows OS to incrementally sync files to disk while they are being
written, asynchronously, in the background.
Issue one request for every bytes_per_sync written. 0 turns it off.

Type: int

Default: 0

	
verify_checksums_in_compaction

	If True, compaction will verify checksum on every read that
happens as part of compaction.

Type: bool

Default: True

	
compaction_style

	The compaction style. Could be set to "level" to use level-style
compaction. For universal-style compaction use "universal".

Type: string

Default: level

	
compaction_options_universal

	Options to use for universal-style compaction. They make only sense if
rocksdb.Options.compaction_style is set to "universal".

It is a dict with the following keys.

	
	size_ratio:

	Percentage flexibilty while comparing file size.
If the candidate file(s) size is 1% smaller than the next file’s size,
then include next file into this candidate set.
Default: 1

	
	min_merge_width:

	The minimum number of files in a single compaction run.
Default: 2

	
	max_merge_width:

	The maximum number of files in a single compaction run.
Default: UINT_MAX

	
	max_size_amplification_percent:

	The size amplification is defined as the amount (in percentage) of
additional storage needed to store a single byte of data in the database.
For example, a size amplification of 2% means that a database that
contains 100 bytes of user-data may occupy upto 102 bytes of
physical storage. By this definition, a fully compacted database has
a size amplification of 0%. Rocksdb uses the following heuristic
to calculate size amplification: it assumes that all files excluding
the earliest file contribute to the size amplification.
Default: 200, which means that a 100 byte database could require upto
300 bytes of storage.

	
	compression_size_percent:

	If this option is set to be -1 (the default value), all the output
files will follow compression type specified.

If this option is not negative, we will try to make sure compressed
size is just above this value. In normal cases, at least this
percentage of data will be compressed.

When we are compacting to a new file, here is the criteria whether
it needs to be compressed: assuming here are the list of files sorted
by generation time: A1...An B1...Bm C1...Ct
where A1 is the newest and Ct is the oldest, and we are going
to compact B1...Bm, we calculate the total size of all the files
as total_size, as well as the total size of C1...Ct as
total_C, the compaction output file will be compressed if
total_C / total_size < this percentage.
Default: -1

	
	stop_style:

	The algorithm used to stop picking files into a single compaction.
Can be either "similar_size" or "total_size".

	similar_size: Pick files of similar size.

	total_size: Total size of picked files is greater than next file.

Default: "total_size"

For setting options, just assign a dict with the fields to set.
It is allowed to omit keys in this dict. Missing keys are just not set
to the underlying options object.

This example just changes the stop_style and leaves the other options
untouched.

opts = rocksdb.Options()
opts.compaction_options_universal = {'stop_style': 'similar_size'}

	
filter_deletes

	Use KeyMayExist API to filter deletes when this is true.
If KeyMayExist returns false, i.e. the key definitely does not exist, then
the delete is a noop. KeyMayExist only incurs in-memory look up.
This optimization avoids writing the delete to storage when appropriate.

Type: bool

Default: False

	
max_sequential_skip_in_iterations

	An iteration->Next() sequentially skips over keys with the same
user-key unless this option is set. This number specifies the number
of keys (with the same userkey) that will be sequentially
skipped before a reseek is issued.

Type: int

Default: 8

	
memtable_factory

	This is a factory that provides MemTableRep objects.
Right now you can assing instances of the following classes.

	rocksdb.VectorMemtableFactory

	rocksdb.SkipListMemtableFactory

	rocksdb.HashSkipListMemtableFactory

	rocksdb.HashLinkListMemtableFactory

Default: rocksdb.SkipListMemtableFactory

	
table_factory

	Factory for the files forming the persisten data storage.
Sometimes they are also named SST-Files. Right now you can assign
instances of the following classes.

	rocksdb.BlockBasedTableFactory

	rocksdb.PlainTableFactory

	rocksdb.TotalOrderPlainTableFactory

Default: rocksdb.BlockBasedTableFactory

	
inplace_update_support

	Allows thread-safe inplace updates. Requires Updates if

	key exists in current memtable

	new sizeof(new_value) <= sizeof(old_value)

	old_value for that key is a put i.e. kTypeValue

Type: bool

Default: False

	
inplace_update_num_locks

	
Number of locks used for inplace update.

Default: 10000, if inplace_update_support = true, else 0.

Type: int

Default: 10000

	
comparator

	Comparator used to define the order of keys in the table.
A python comparator must implement the rocksdb.interfaces.Comparator
interface.

Requires: The client must ensure that the comparator supplied
here has the same name and orders keys exactly the same as the
comparator provided to previous open calls on the same DB.

Default: rocksdb.BytewiseComparator

	
merge_operator

	The client must provide a merge operator if Merge operation
needs to be accessed. Calling Merge on a DB without a merge operator
would result in rocksdb.errors.NotSupported. The client must
ensure that the merge operator supplied here has the same name and
exactly the same semantics as the merge operator provided to
previous open calls on the same DB. The only exception is reserved
for upgrade, where a DB previously without a merge operator is
introduced to Merge operation for the first time. It’s necessary to
specify a merge operator when openning the DB in this case.

A python merge operator must implement the
rocksdb.interfaces.MergeOperator or
rocksdb.interfaces.AssociativeMergeOperator
interface.

Default: None

	
prefix_extractor

	If not None, use the specified function to determine the
prefixes for keys. These prefixes will be placed in the filter.
Depending on the workload, this can reduce the number of read-IOP
cost for scans when a prefix is passed to the calls generating an
iterator (rocksdb.DB.iterkeys() ...).

A python prefix_extractor must implement the
rocksdb.interfaces.SliceTransform interface

For prefix filtering to work properly, “prefix_extractor” and “comparator”
must be such that the following properties hold:

	key.starts_with(prefix(key))

	compare(prefix(key), key) <= 0

	If compare(k1, k2) <= 0, then compare(prefix(k1), prefix(k2)) <= 0

	prefix(prefix(key)) == prefix(key)

Default: None

	
row_cache

	A global cache for table-level rows. If None this cache is not used.
Otherwise it must be an instance of rocksdb.LRUCache

Default: None

CompressionTypes

	
class rocksdb.CompressionType

	Defines the support compression types

	
no_compression

	

	
snappy_compression

	

	
zlib_compression

	

	
bzip2_compression

	

	
lz4_compression

	

	
lz4hc_compression

	

BytewiseComparator

	
class rocksdb.BytewiseComparator

	Wraps the rocksdb Bytewise Comparator, it uses lexicographic byte-wise
ordering

BloomFilterPolicy

	
class rocksdb.BloomFilterPolicy

	Wraps the rocksdb BloomFilter Policy

	
__init__(bits_per_key)

	

	Parameters:	bits_per_key (int) – Specifies the approximately number of bits per key.
A good value for bits_per_key is 10, which yields a filter with
~ 1% false positive rate.

LRUCache

	
class rocksdb.LRUCache

	Wraps the rocksdb LRUCache

	
__init__(capacity, shard_bits=None)

	Create a new cache with a fixed size capacity (in bytes).
The cache is sharded to 2^numShardBits shards, by hash of the key.
The total capacity is divided and evenly assigned to each shard.

TableFactories

Currently RocksDB supports two types of tables: plain table and block-based table.
Instances of this classes can assigned to rocksdb.Options.table_factory

	Block-based table: This is the default table type that RocksDB inherited from
LevelDB. It was designed for storing data in hard disk or flash device.

	Plain table: It is one of RocksDB’s SST file format optimized
for low query latency on pure-memory or really low-latency media.

Tutorial of rocksdb table formats is available here:
https://github.com/facebook/rocksdb/wiki/A-Tutorial-of-RocksDB-SST-formats

	
class rocksdb.BlockBasedTableFactory

	Wraps BlockBasedTableFactory of RocksDB.

	
__init__(index_type='binary_search', hash_index_allow_collision=True, checksum='crc32', block_cache, block_cache_compressed, filter_policy=None, no_block_cache=False, block_size=None, block_size_deviation=None, block_restart_interval=None, whole_key_filtering=None):

	

	Parameters:	
	index_type (string) –
	binary_search a space efficient index block that is optimized
for binary-search-based index.

	hash_search the hash index. If enabled, will do hash lookup
when Options.prefix_extractor is provided.

	hash_index_allow_collision (bool) – Influence the behavior when hash_search is used.
If False, stores a precise prefix to block range mapping.
If True, does not store prefix and allows prefix hash collision
(less memory consumption)

	checksum (string) – Use the specified checksum type. Newly created table files will be
protected with this checksum type. Old table files will still be readable,
even though they have different checksum type.
Can be either crc32 or xxhash.

	block_cache – Control over blocks (user data is stored in a set of blocks, and
a block is the unit of reading from disk).

If None, rocksdb will automatically create and use an 8MB internal cache.
If not None use the specified cache for blocks. In that case it must
be an instance of rocksdb.LRUCache

	block_cache_compressed – If None, rocksdb will not use a compressed block cache.
If not None use the specified cache for compressed blocks. In that
case it must be an instance of rocksdb.LRUCache

	filter_policy – If not None use the specified filter policy to reduce disk reads.
A python filter policy must implement the
rocksdb.interfaces.FilterPolicy interface.
Recommended is a instance of rocksdb.BloomFilterPolicy

	no_block_cache (bool) – Disable block cache. If this is set to true,
then no block cache should be used, and the block_cache should
point to None

	block_size (int) – If set to None the rocksdb default of 4096 is used.
Approximate size of user data packed per block. Note that the
block size specified here corresponds to uncompressed data. The
actual size of the unit read from disk may be smaller if
compression is enabled. This parameter can be changed dynamically.

	block_size_deviation (int) – If set to None the rocksdb default of 10 is used.
This is used to close a block before it reaches the configured
‘block_size’. If the percentage of free space in the current block is less
than this specified number and adding a new record to the block will
exceed the configured block size, then this block will be closed and the
new record will be written to the next block.

	block_restart_interval (int) – If set to None the rocksdb default of 16 is used.
Number of keys between restart points for delta encoding of keys.
This parameter can be changed dynamically. Most clients should
leave this parameter alone.

	whole_key_filtering (bool) – If set to None the rocksdb default of True is used.
If True, place whole keys in the filter (not just prefixes).
This must generally be true for gets to be efficient.

	
class rocksdb.PlainTableFactory

	Plain Table with prefix-only seek. It wraps rocksdb PlainTableFactory.

For this factory, you need to set rocksdb.Options.prefix_extractor
properly to make it work. Look-up will start with prefix hash lookup for
key prefix. Inside the hash bucket found, a binary search is executed for
hash conflicts. Finally, a linear search is used.

	
__init__(user_key_len=0, bloom_bits_per_key=10, hash_table_ratio=0.75, index_sparseness=10, huge_page_tlb_size=0, encoding_type='plain', full_scan_mode=False, store_index_in_file=False)

	

	Parameters:	
	user_key_len (int) – Plain table has optimization for fix-sized keys, which can be
specified via user_key_len.
Alternatively, you can pass 0 if your keys have variable lengths.

	bloom_bits_per_key (int) – The number of bits used for bloom filer per prefix.
You may disable it by passing 0.

	hash_table_ratio (float) – The desired utilization of the hash table used for prefix hashing.
hash_table_ratio = number of prefixes / #buckets in the hash table.

	index_sparseness (int) – Inside each prefix, need to build one index record for how
many keys for binary search inside each hash bucket.
For encoding type prefix, the value will be used when
writing to determine an interval to rewrite the full key.
It will also be used as a suggestion and satisfied when possible.

	huge_page_tlb_size (int) – If <=0, allocate hash indexes and blooms from malloc.
Otherwise from huge page TLB.
The user needs to reserve huge pages for it to be allocated, like:
sysctl -w vm.nr_hugepages=20
See linux doc Documentation/vm/hugetlbpage.txt

	encoding_type (string) – How to encode the keys. The value will determine how to encode keys
when writing to a new SST file. This value will be stored
inside the SST file which will be used when reading from the
file, which makes it possible for users to choose different
encoding type when reopening a DB. Files with different
encoding types can co-exist in the same DB and can be read.

	plain: Always write full keys without any special encoding.

	
	prefix: Find opportunity to write the same prefix once for multiple rows.

	In some cases, when a key follows a previous key with the same prefix,
instead of writing out the full key, it just writes out the size of the
shared prefix, as well as other bytes, to save some bytes.When using this option, the user is required to use the same prefix
extractor to make sure the same prefix will be extracted from the same key.
The Name() value of the prefix extractor will be stored in the file.
When reopening the file, the name of the options.prefix_extractor given
will be bitwise compared to the prefix extractors stored in the file.
An error will be returned if the two don’t match.

	full_scan_mode (bool) – Mode for reading the whole file one record by one without using the index.

	store_index_in_file (bool) – Compute plain table index and bloom filter during file building
and store it in file. When reading file, index will be mmaped
instead of recomputation.

MemtableFactories

RocksDB has different classes to represent the in-memory buffer for the current
operations. You have to assing instances of the following classes to
rocksdb.Options.memtable_factory.
This page has a comparison the most popular ones.
https://github.com/facebook/rocksdb/wiki/Hash-based-memtable-implementations

	
class rocksdb.VectorMemtableFactory

	This creates MemTableReps that are backed by an std::vector.
On iteration, the vector is sorted. This is useful for workloads where
iteration is very rare and writes are generally not issued after reads begin.

	
__init__(count=0)

	

	Parameters:	count (int) – Passed to the constructor of the underlying std::vector of each
VectorRep. On initialization, the underlying array will be at
least count bytes reserved for usage.

	
class rocksdb.SkipListMemtableFactory

	This uses a skip list to store keys.

	
__init__()

	

	
class rocksdb.HashSkipListMemtableFactory

	This class contains a fixed array of buckets, each pointing
to a skiplist (null if the bucket is empty).

Note

rocksdb.Options.prefix_extractor must be set, otherwise
rocksdb fails back to skip-list.

	
__init__(bucket_count = 1000000, skiplist_height = 4, skiplist_branching_factor = 4)

	

	Parameters:	
	bucket_count (int) – number of fixed array buckets

	skiplist_height (int) – the max height of the skiplist

	skiplist_branching_factor (int) – probabilistic size ratio between adjacent link lists in the skiplist

	
class rocksdb.HashLinkListMemtableFactory

	The factory is to create memtables with a hashed linked list.
It contains a fixed array of buckets, each pointing to a sorted single
linked list (null if the bucket is empty).

Note

rocksdb.Options.prefix_extractor must be set, otherwise
rocksdb fails back to skip-list.

	
__init__(bucket_count=50000)

	

	Parameters:	bucket (int) – number of fixed array buckets

Database interactions

Database object

	
class rocksdb.DB

	
	
__init__(db_name, Options opts, read_only=False)

	

	Parameters:	
	db_name (unicode) – Name of the database to open

	opts (rocksdb.Options) – Options for this specific database

	read_only (bool) – If True the database is opened read-only.
All DB calls which modify data will raise an
Exception.

	
put(key, value, sync=False, disable_wal=False)

	Set the database entry for “key” to “value”.

	Parameters:	
	key (bytes) – Name for this entry

	value (bytes) – Data for this entry

	sync (bool) – If True, the write will be flushed from the operating system
buffer cache (by calling WritableFile::Sync()) before the write
is considered complete. If this flag is true, writes will be
slower.

If this flag is False, and the machine crashes, some recent
writes may be lost. Note that if it is just the process that
crashes (i.e., the machine does not reboot), no writes will be
lost even if sync == False.

In other words, a DB write with sync == False has similar
crash semantics as the “write()” system call. A DB write
with sync == True has similar crash semantics to a “write()”
system call followed by “fdatasync()”.

	disable_wal (bool) – If True, writes will not first go to the write ahead log,
and the write may got lost after a crash.

	
delete(key, sync=False, disable_wal=False)

	Remove the database entry for “key”.

	Parameters:	
	key (bytes) – Name to delete

	sync – See rocksdb.DB.put()

	disable_wal – See rocksdb.DB.put()

	Raises:	rocksdb.errors.NotFound – If the key did not exists

	
merge(key, value, sync=False, disable_wal=False)

	Merge the database entry for “key” with “value”.
The semantics of this operation is determined by the user provided
merge_operator when opening DB.

See rocksdb.DB.put() for the parameters

	Raises:	rocksdb.errors.NotSupported if this is called and
no rocksdb.Options.merge_operator was set at creation

	
write(batch, sync=False, disable_wal=False)

	Apply the specified updates to the database.

	Parameters:	
	batch (rocksdb.WriteBatch) – Batch to apply

	sync – See rocksdb.DB.put()

	disable_wal – See rocksdb.DB.put()

	
get(key, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	

	Parameters:	
	key (bytes) – Name to get

	verify_checksums (bool) – If True, all data read from underlying storage will be
verified against corresponding checksums.

	fill_cache (bool) – Should the “data block”, “index block” or “filter block”
read for this iteration be cached in memory?
Callers may wish to set this field to False for bulk scans.

	snapshot (rocksdb.Snapshot) – If not None, read as of the supplied snapshot
(which must belong to the DB that is being read and which must
not have been released). Is it None a implicit snapshot of the
state at the beginning of this read operation is used

	read_tier (string) – Specify if this read request should process data that ALREADY
resides on a particular cache. If the required data is not
found at the specified cache,
then rocksdb.errors.Incomplete is raised.

Use all if a fetch from disk is allowed.

Use cache if only data from cache is allowed.

	Returns:	None if not found, else the value for this key

	
multi_get(keys, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	

	Parameters:	keys (list of bytes) – Keys to fetch

For the other params see rocksdb.DB.get()

	Returns:	A dict where the value is either bytes or None if not found

	Raises:	If the fetch for a single key fails

Note

keys will not be “de-duplicated”.
Duplicate keys will return duplicate values in order.

	
key_may_exist(key, fetch=False, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	If the key definitely does not exist in the database, then this method
returns False, else True. If the caller wants to obtain value
when the key is found in memory, fetch should be set to True.
This check is potentially lighter-weight than invoking DB::get().
One way to make this lighter weight is to avoid doing any IOs.

	Parameters:	
	key (bytes) – Key to check

	fetch (bool) – Obtain also the value if found

For the other params see rocksdb.DB.get()

	Returns:	
	(True, None) if key is found but value not in memory

	(True, None) if key is found and fetch=False

	(True, <data>) if key is found and value in memory and fetch=True

	(False, None) if key is not found

	
iterkeys(fetch=False, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	Iterate over the keys

For other params see rocksdb.DB.get()

	Returns:	A iterator object which is not valid yet.
Call first one of the seek methods of the iterator to position it

	Return type:	rocksdb.BaseIterator

	
itervalues(fetch=False, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	Iterate over the values

For other params see rocksdb.DB.get()

	Returns:	A iterator object which is not valid yet.
Call first one of the seek methods of the iterator to position it

	Return type:	rocksdb.BaseIterator

	
iteritems(fetch=False, verify_checksums=False, fill_cache=True, snapshot=None, read_tier="all")

	Iterate over the items

For other params see rocksdb.DB.get()

	Returns:	A iterator object which is not valid yet.
Call first one of the seek methods of the iterator to position it

	Return type:	rocksdb.BaseIterator

	
snapshot()

	Return a handle to the current DB state.
Iterators created with this handle will all observe a stable snapshot
of the current DB state.

	Return type:	rocksdb.Snapshot

	
get_property(prop)

	DB implementations can export properties about their state
via this method. If “property” is a valid property understood by this
DB implementation, a byte string with its value is returned.
Otherwise None

Valid property names include:

	
	b"rocksdb.num-files-at-level<N>": return the number of files at level <N>,

	where <N> is an ASCII representation of a level number (e.g. “0”).

	
	b"rocksdb.stats": returns a multi-line byte string that describes statistics

	about the internal operation of the DB.

	
	b"rocksdb.sstables": returns a multi-line byte string that describes all

	of the sstables that make up the db contents.

	b"rocksdb.num-immutable-mem-table": Number of immutable mem tables.

	b"rocksdb.mem-table-flush-pending": Returns 1 if mem table flush is pending, otherwise 0.

	b"rocksdb.compaction-pending": Returns 1 if a compaction is pending, otherweise 0.

	b"rocksdb.background-errors": Returns accumulated background errors encountered.

	b"rocksdb.cur-size-active-mem-table": Returns current size of the active memtable.

	
get_live_files_metadata()

	Returns a list of all table files.

It returns a list of dict’s were each dict has the following keys.

	name

	Name of the file

	level

	Level at which this file resides

	size

	File size in bytes

	smallestkey

	Smallest user defined key in the file

	largestkey

	Largest user defined key in the file

	smallest_seqno

	smallest seqno in file

	largest_seqno

	largest seqno in file

	
compact_range(begin=None, end=None, ** options)

	Compact the underlying storage for the key range [begin,end].
The actual compaction interval might be superset of [begin, end].
In particular, deleted and overwritten versions are discarded,
and the data is rearranged to reduce the cost of operations
needed to access the data.

This operation should typically only be invoked by users who understand
the underlying implementation.

begin == None is treated as a key before all keys in the database.
end == None is treated as a key after all keys in the database.
Therefore the following call will compact the entire database: db.compact_range().

Note that after the entire database is compacted, all data are pushed
down to the last level containing any data. If the total data size
after compaction is reduced, that level might not be appropriate for
hosting all the files. In this case, client could set change_level
to True, to move the files back to the minimum level capable of holding
the data set or a given level (specified by non-negative target_level).

	Parameters:	
	begin (bytes) – Key where to start compaction.
If None start at the beginning of the database.

	end (bytes) – Key where to end compaction.
If None end at the last key of the database.

	change_level (bool) – If True, compacted files will be moved to
the minimum level capable of holding the data
or given level (specified by non-negative target_level).
If False you may end with a bigger level
than configured. Default is False.

	target_level (int) – If change_level is true and target_level have non-negative
value, compacted files will be moved to target_level.
Default is -1.

	bottommost_level_compaction (string) – For level based compaction, we can configure if we want to
skip/force bottommost level compaction. By default level based
compaction will only compact the bottommost level if there is a
compaction filter. It can be set to the following values.

	skip

	Skip bottommost level compaction

	if_compaction_filter

	Only compact bottommost level if there is a compaction filter.
This is the default.

	force

	Always compact bottommost level

	
options

	Returns the associated rocksdb.Options instance.

Note

Changes to this object have no effect anymore.
Consider this as read-only

Iterator

	
class rocksdb.BaseIterator

	Base class for all iterators in this module. After creation a iterator is
invalid. Call one of the seek methods first before starting iteration

	
seek_to_first()

	Position at the first key in the source

	
seek_to_last()

	Position at the last key in the source

	
seek(key)

	

	Parameters:	key (bytes) – Position at the first key in the source that at or past

Methods to support the python iterator protocol

	
__iter__()

	

	
__next__()

	

	
__reversed__()

	

Snapshot

	
class rocksdb.Snapshot

	Opaque handler for a single Snapshot.
Snapshot is released if nobody holds a reference on it.
Retrieved via rocksdb.DB.snapshot()

WriteBatch

	
class rocksdb.WriteBatch

	
WriteBatch holds a collection of updates to apply atomically to a DB.

The updates are applied in the order in which they are added
to the WriteBatch. For example, the value of “key” will be “v3”
after the following batch is written:

batch = rocksdb.WriteBatch()
batch.put(b"key", b"v1")
batch.delete(b"key")
batch.put(b"key", b"v2")
batch.put(b"key", b"v3")

	
__init__(data=None)

	Creates a WriteBatch.

	Parameters:	data (bytes) – A serialized version of a previous WriteBatch. As retrieved
from a previous .data() call. If None a empty WriteBatch is
generated

	
put(key, value)

	Store the mapping “key->value” in the database.

	Parameters:	
	key (bytes) – Name of the entry to store

	value (bytes) – Data of this entry

	
merge(key, value)

	Merge “value” with the existing value of “key” in the database.

	Parameters:	
	key (bytes) – Name of the entry to merge

	value (bytes) – Data to merge

	
delete(key)

	If the database contains a mapping for “key”, erase it. Else do nothing.

	Parameters:	key (bytes) – Key to erase

	
clear()

	Clear all updates buffered in this batch.

Note

Don’t call this method if there is an outstanding iterator.
Calling rocksdb.WriteBatch.clear() with outstanding
iterator, leads to SEGFAULT.

	
data()

	Retrieve the serialized version of this batch.

	Return type:	bytes

	
count()

	Returns the number of updates in the batch

	Return type:	int

	
__iter__()

	Returns an iterator over the current contents of the write batch.

If you add new items to the batch, they are not visible for this
iterator. Create a new one if you need to see them.

Note

Calling rocksdb.WriteBatch.clear() on the write batch
invalidates the iterator. Using a iterator where its corresponding
write batch has been cleared, leads to SEGFAULT.

	Return type:	rocksdb.WriteBatchIterator

WriteBatchIterator

	
class rocksdb.WriteBatchIterator

	
	
__iter__()

	Returns self.

	
__next__()

	Returns the next item inside the corresponding write batch.
The return value is a tuple of always size three.

First item (Name of the operation):

	"Put"

	"Merge"

	"Delete"

	Second item (key):

	Key for this operation.

	Third item (value):

	The value for this operation. Empty for "Delete".

Repair DB

	
repair_db(db_name, opts)

	

	Parameters:	
	db_name (unicode) – Name of the database to open

	opts (rocksdb.Options) – Options for this specific database

If a DB cannot be opened, you may attempt to call this method to
resurrect as much of the contents of the database as possible.
Some data may be lost, so be careful when calling this function
on a database that contains important information.

Errors

	
exception rocksdb.errors.NotFound

	

	
exception rocksdb.errors.Corruption

	

	
exception rocksdb.errors.NotSupported

	

	
exception rocksdb.errors.InvalidArgument

	

	
exception rocksdb.errors.RocksIOError

	

	
exception rocksdb.errors.MergeInProgress

	

	
exception rocksdb.errors.Incomplete

	

Interfaces

Comparator

	
class rocksdb.interfaces.Comparator

	A Comparator object provides a total order across slices that are
used as keys in an sstable or a database. A Comparator implementation
must be thread-safe since rocksdb may invoke its methods concurrently
from multiple threads.

	
compare(a, b)

	Three-way comparison.

	Parameters:	
	a (bytes) – First field to compare

	b (bytes) – Second field to compare

	Returns:	
	-1 if a < b

	0 if a == b

	1 if a > b

	Return type:	int

	
name()

	The name of the comparator. Used to check for comparator
mismatches (i.e., a DB created with one comparator is
accessed using a different comparator).

The client of this package should switch to a new name whenever
the comparator implementation changes in a way that will cause
the relative ordering of any two keys to change.

Names starting with “rocksdb.” are reserved and should not be used
by any clients of this package.

	Return type:	bytes

Merge Operator

Essentially, a MergeOperator specifies the SEMANTICS of a merge, which only
client knows. It could be numeric addition, list append, string
concatenation, edit data structure, whatever.
The library, on the other hand, is concerned with the exercise of this
interface, at the right time (during get, iteration, compaction...)

To use merge, the client needs to provide an object implementing one of
the following interfaces:

	AssociativeMergeOperator - for most simple semantics (always take
two values, and merge them into one value, which is then put back
into rocksdb).
numeric addition and string concatenation are examples.

	MergeOperator - the generic class for all the more complex operations.
One method (FullMerge) to merge a Put/Delete value with a merge operand.
Another method (PartialMerge) that merges two operands together.
This is especially useful if your key values have a complex structure but
you would still like to support client-specific incremental updates.

AssociativeMergeOperator is simpler to implement.
MergeOperator is simply more powerful.

See this page for more details
https://github.com/facebook/rocksdb/wiki/Merge-Operator

AssociativeMergeOperator

	
class rocksdb.interfaces.AssociativeMergeOperator

	
	
merge(key, existing_value, value)

	Gives the client a way to express the read -> modify -> write semantics

	Parameters:	
	key (bytes) – The key that’s associated with this merge operation

	existing_value (bytes) – The current value in the db.
None indicates the key does not exist
before this op

	value (bytes) – The value to update/merge the existing_value with

	Returns:	True and the new value on success.
All values passed in will be client-specific values.
So if this method returns false, it is because client
specified bad data or there was internal corruption.
The client should assume that this will be treated as an
error by the library.

	Return type:	(bool, bytes)

	
name()

	The name of the MergeOperator. Used to check for MergeOperator mismatches.
For example a DB created with one MergeOperator is accessed using a
different MergeOperator.

	Return type:	bytes

MergeOperator

	
class rocksdb.interfaces.MergeOperator

	
	
full_merge(key, existing_value, operand_list)

	Gives the client a way to express the read -> modify -> write semantics

	Parameters:	
	key (bytes) – The key that’s associated with this merge operation.
Client could multiplex the merge operator based on it
if the key space is partitioned and different subspaces
refer to different types of data which have different
merge operation semantics

	existing_value (bytes) – The current value in the db.
None indicates the key does not exist
before this op

	operand_list (list of bytes) – The sequence of merge operations to apply.

	Returns:	True and the new value on success.
All values passed in will be client-specific values.
So if this method returns false, it is because client
specified bad data or there was internal corruption.
The client should assume that this will be treated as an
error by the library.

	Return type:	(bool, bytes)

	
partial_merge(key, left_operand, right_operand)

	This function performs merge(left_op, right_op)
when both the operands are themselves merge operation types
that you would have passed to a DB::Merge() call in the same order.
For example DB::Merge(key,left_op), followed by DB::Merge(key,right_op)).

PartialMerge should combine them into a single merge operation that is
returned together with True
This new value should be constructed such that a call to
DB::Merge(key, new_value) would yield the same result as a call
to DB::Merge(key, left_op) followed by DB::Merge(key, right_op).

If it is impossible or infeasible to combine the two operations,
return (False, None) The library will internally keep track of the
operations, and apply them in the correct order once a base-value
(a Put/Delete/End-of-Database) is seen.

	Parameters:	
	key (bytes) – the key that is associated with this merge operation.

	left_operand (bytes) – First operand to merge

	right_operand (bytes) – Second operand to merge

	Return type:	(bool, bytes)

Note

Presently there is no way to differentiate between error/corruption
and simply “return false”. For now, the client should simply return
false in any case it cannot perform partial-merge, regardless of reason.
If there is corruption in the data, handle it in the FullMerge() function,
and return false there.

	
name()

	The name of the MergeOperator. Used to check for MergeOperator mismatches.
For example a DB created with one MergeOperator is accessed using a
different MergeOperator.

	Return type:	bytes

FilterPolicy

	
class rocksdb.interfaces.FilterPolicy

	
	
create_filter(keys)

	Create a bytestring which can act as a filter for keys.

	Parameters:	keys (list of bytes) – list of keys (potentially with duplicates)
that are ordered according to the user supplied
comparator.

	Returns:	A filter that summarizes keys

	Return type:	bytes

	
key_may_match(key, filter)

	Check if the key is maybe in the filter.

	Parameters:	
	key (bytes) – Key for a single entry inside the database

	filter (bytes) – Contains the data returned by a preceding call
to create_filter on this class

	Returns:	This method must return True if the key was in the list
of keys passed to create_filter().
This method may return True or False if the key was
not on the list, but it should aim to return False with
a high probability.

	Return type:	bool

	
name()

	Return the name of this policy. Note that if the filter encoding
changes in an incompatible way, the name returned by this method
must be changed. Otherwise, old incompatible filters may be
passed to methods of this type.

	Return type:	bytes

SliceTransform

	
class rocksdb.interfaces.SliceTransform

	SliceTransform is currently used to implement the ‘prefix-API’ of rocksdb.
https://github.com/facebook/rocksdb/wiki/Proposal-for-prefix-API

	
transform(src)

	

	Parameters:	src (bytes) – Full key to extract the prefix from.

	Returns:	A tuple of two interges (offset, size).
Where the first integer is the offset within the src
and the second the size of the prefix after the offset.
Which means the prefix is generted by src[offset:offset+size]

	Return type:	(int, int)

	
in_domain(src)

	Decide if a prefix can be extraced from src.
Only if this method returns True transform() will be
called.

	Parameters:	src (bytes) – Full key to check.

	Return type:	bool

	
in_range(prefix)

	Checks if prefix is a valid prefix

	Parameters:	prefix (bytes) – Prefix to check.

	Returns:	True if prefix is a valid prefix.

	Return type:	bool

	
name()

	Return the name of this transformation.

	Return type:	bytes

Backup and Restore

BackupEngine

	
class rocksdb.BackupEngine

	
	
__init__(backup_dir)

	Creates a object to manage backup of a single database.

	Parameters:	backup_dir (unicode) – Where to keep the backup files.
Has to be different than db.db_name.
For example db.db_name + ‘/backups’.

	
create_backup(db, flush_before_backup=False)

	Triggers the creation of a backup.

	Parameters:	
	db (rocksdb.DB) – Database object to backup.

	flush_before_backup (bool) – If True the current memtable is flushed.

	
restore_backup(backup_id, db_dir, wal_dir)

	Restores the backup from the given id.

	Parameters:	
	backup_id (int) – id of the backup to restore.

	db_dir (unicode) – Target directory to restore backup.

	wal_dir (unicode) – Target directory to restore backuped WAL files.

	
restore_latest_backup(db_dir, wal_dir)

	Restores the latest backup.

	Parameters:	
	db_dir (unicode) – see restore_backup()

	wal_dir (unicode) – see restore_backup()

	
stop_backup()

	Can be called from another thread to stop the current backup process.

	
purge_old_backups(num_backups_to_keep)

	Deletes all backups (oldest first) until “num_backups_to_keep” are left.

	Parameters:	num_backups_to_keep (int) – Number of backupfiles to keep.

	
delete_backup(backup_id)

	

	Parameters:	backup_id (int) – Delete the backup with the given id.

	
get_backup_info()

	Returns information about all backups.

It returns a list of dict’s where each dict as the following keys.

	backup_id

	(int): id of this backup.

	timestamp

	(int): Seconds since epoch, when the backup was created.

	size

	(int): Size in bytes of the backup.

Changelog

Version 0.5

Version 0.4

This version works with RocksDB v3.12.

	Added repair_db().

	Added rocksdb.Options.row_cache()

	Publish to pypi.

Backward Incompatible Changes:

	Changed API of rocksdb.DB.compact_range().

	Only allow keyword arguments.

	Changed reduce_level to change_level.

	Add new argument called bottommost_level_compaction.

Version 0.3

This version works with RocksDB version v3.11.

Backward Incompatible Changes:

Prefix Seeks:

According to this page https://github.com/facebook/rocksdb/wiki/Prefix-Seek-API-Changes,
all the prefix related parameters on ReadOptions are removed.
Rocksdb realizes now if Options.prefix_extractor is set and uses then
prefix-seeks automatically. This means the following changes on pyrocksdb.

	DB.iterkeys, DB.itervalues, DB.iteritems have no prefix parameter anymore.

	DB.get, DB.multi_get, DB.key_may_exist, DB.iterkeys, DB.itervalues, DB.iteritems
have no prefix_seek parameter anymore.

Which means all the iterators walk now always to the end of the database.
So if you need to stay within a prefix, write your own code to ensure that.
For DB.iterkeys and DB.iteritems itertools.takewhile is a possible solution.

from itertools import takewhile

it = self.db.iterkeys()
it.seek(b'00002')
print list(takewhile(lambda key: key.startswith(b'00002'), it))

it = self.db.iteritems()
it.seek(b'00002')
print dict(takewhile(lambda item: item[0].startswith(b'00002'), it))

SST Table Builders:

	Removed NewTotalOrderPlainTableFactory, because rocksdb drops it too.

Changed Options:

In newer versions of rocksdb a bunch of options were moved or removed.

	Rename bloom_bits_per_prefix of rocksdb.PlainTableFactory to bloom_bits_per_key

	Removed Options.db_stats_log_interval.

	Removed Options.disable_seek_compaction

	Moved Options.no_block_cache to BlockBasedTableFactory

	Moved Options.block_size to BlockBasedTableFactory

	Moved Options.block_size_deviation to BlockBasedTableFactory

	Moved Options.block_restart_interval to BlockBasedTableFactory

	Moved Options.whole_key_filtering to BlockBasedTableFactory

	Removed Options.table_cache_remove_scan_count_limit

	Removed rm_scan_count_limit from LRUCache

New:

	Make CompactRange available: rocksdb.DB.compact_range()

	Add init options to rocksdb.BlockBasedTableFactory

	Add more option to rocksdb.PlainTableFactory

	Add rocksdb.WriteBatchIterator

	add rocksdb.CompressionType.lz4_compression

	add rocksdb.CompressionType.lz4hc_compression

Version 0.2

This version works with RocksDB version 2.8.fb. Now you have access to the more
advanced options of rocksdb. Like changing the memtable or SST representation.
It is also possible now to enable Universal Style Compaction.

	Fixed issue 3 [https://github.com/stephan-hof/pyrocksdb/pull/3].
Which fixed the change of prefix_extractor from raw-pointer to smart-pointer.

	Support the new rocksdb.Options.verify_checksums_in_compaction option.

	Add rocksdb.Options.table_factory option. So you could use the new
‘PlainTableFactories’ which are optimized for in-memory-databases.
	https://github.com/facebook/rocksdb/wiki/PlainTable-Format

	https://github.com/facebook/rocksdb/wiki/How-to-persist-in-memory-RocksDB-database%3F

	Add rocksdb.Options.memtable_factory option.

	Add options rocksdb.Options.compaction_style and
rocksdb.Options.compaction_options_universal to change the
compaction style.

	Update documentation to the new default values
	allow_mmap_reads=true

	allow_mmap_writes=false

	max_background_flushes=1

	max_open_files=5000

	paranoid_checks=true

	disable_seek_compaction=true

	level0_stop_writes_trigger=24

	level0_slowdown_writes_trigger=20

	Document new property names for rocksdb.DB.get_property().

Version 0.1

Initial version. Works with rocksdb version 2.7.fb.

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 rocksdb	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (rocksdb.BackupEngine method)

 	(rocksdb.BloomFilterPolicy method)

 	(rocksdb.DB method)

 	(rocksdb.HashLinkListMemtableFactory method)

 	(rocksdb.HashSkipListMemtableFactory method)

 	(rocksdb.LRUCache method)

 	(rocksdb.Options method)

 	(rocksdb.PlainTableFactory method)

 	(rocksdb.SkipListMemtableFactory method)

 	(rocksdb.VectorMemtableFactory method)

 	(rocksdb.WriteBatch method)

 	
 	__iter__() (rocksdb.BaseIterator method)

 	(rocksdb.WriteBatch method)

 	(rocksdb.WriteBatchIterator method)

 	__next__() (rocksdb.BaseIterator method)

 	(rocksdb.WriteBatchIterator method)

 	__reversed__() (rocksdb.BaseIterator method)

A

 	
 	advise_random_on_open (rocksdb.Options attribute)

 	allow_mmap_reads (rocksdb.Options attribute)

 	
 	allow_mmap_writes (rocksdb.Options attribute)

 	allow_os_buffer (rocksdb.Options attribute)

 	arena_block_size (rocksdb.Options attribute)

B

 	
 	bytes_per_sync (rocksdb.Options attribute)

 	
 	bzip2_compression (rocksdb.CompressionType attribute)

C

 	
 	clear() (rocksdb.WriteBatch method)

 	compact_range() (rocksdb.DB method)

 	compaction_options_universal (rocksdb.Options attribute)

 	compaction_style (rocksdb.Options attribute)

 	comparator (rocksdb.Options attribute)

 	
 	compare() (rocksdb.interfaces.Comparator method)

 	compression (rocksdb.Options attribute)

 	count() (rocksdb.WriteBatch method)

 	create_backup() (rocksdb.BackupEngine method)

 	create_filter() (rocksdb.interfaces.FilterPolicy method)

 	create_if_missing (rocksdb.Options attribute)

D

 	
 	data() (rocksdb.WriteBatch method)

 	db_log_dir (rocksdb.Options attribute)

 	delete() (rocksdb.DB method)

 	(rocksdb.WriteBatch method)

 	
 	delete_backup() (rocksdb.BackupEngine method)

 	delete_obsolete_files_period_micros (rocksdb.Options attribute)

 	disable_auto_compactions (rocksdb.Options attribute)

 	disable_data_sync (rocksdb.Options attribute)

E

 	
 	error_if_exists (rocksdb.Options attribute)

 	
 	expanded_compaction_factor (rocksdb.Options attribute)

F

 	
 	filter_deletes (rocksdb.Options attribute)

 	
 	full_merge() (rocksdb.interfaces.MergeOperator method)

G

 	
 	get() (rocksdb.DB method)

 	get_backup_info() (rocksdb.BackupEngine method)

 	
 	get_live_files_metadata() (rocksdb.DB method)

 	get_property() (rocksdb.DB method)

H

 	
 	hard_rate_limit (rocksdb.Options attribute)

I

 	
 	in_domain() (rocksdb.interfaces.SliceTransform method)

 	in_range() (rocksdb.interfaces.SliceTransform method)

 	inplace_update_num_locks (rocksdb.Options attribute)

 	inplace_update_support (rocksdb.Options attribute)

 	
 	is_fd_close_on_exec (rocksdb.Options attribute)

 	iteritems() (rocksdb.DB method)

 	iterkeys() (rocksdb.DB method)

 	itervalues() (rocksdb.DB method)

K

 	
 	keep_log_file_num (rocksdb.Options attribute)

 	
 	key_may_exist() (rocksdb.DB method)

 	key_may_match() (rocksdb.interfaces.FilterPolicy method)

L

 	
 	level0_file_num_compaction_trigger (rocksdb.Options attribute)

 	level0_slowdown_writes_trigger (rocksdb.Options attribute)

 	level0_stop_writes_trigger (rocksdb.Options attribute)

 	
 	log_file_time_to_roll (rocksdb.Options attribute)

 	lz4_compression (rocksdb.CompressionType attribute)

 	lz4hc_compression (rocksdb.CompressionType attribute)

M

 	
 	manifest_preallocation_size (rocksdb.Options attribute)

 	max_background_compactions (rocksdb.Options attribute)

 	max_background_flushes (rocksdb.Options attribute)

 	max_bytes_for_level_base (rocksdb.Options attribute)

 	max_bytes_for_level_multiplier (rocksdb.Options attribute)

 	max_bytes_for_level_multiplier_additional (rocksdb.Options attribute)

 	max_grandparent_overlap_factor (rocksdb.Options attribute)

 	max_log_file_size (rocksdb.Options attribute)

 	max_manifest_file_size (rocksdb.Options attribute)

 	max_mem_compaction_level (rocksdb.Options attribute)

 	
 	max_open_files (rocksdb.Options attribute)

 	max_sequential_skip_in_iterations (rocksdb.Options attribute)

 	max_write_buffer_number (rocksdb.Options attribute)

 	memtable_factory (rocksdb.Options attribute)

 	merge() (rocksdb.DB method)

 	(rocksdb.WriteBatch method)

 	(rocksdb.interfaces.AssociativeMergeOperator method)

 	merge_operator (rocksdb.Options attribute)

 	min_write_buffer_number_to_merge (rocksdb.Options attribute)

 	multi_get() (rocksdb.DB method)

N

 	
 	name() (rocksdb.interfaces.AssociativeMergeOperator method)

 	(rocksdb.interfaces.Comparator method)

 	(rocksdb.interfaces.FilterPolicy method)

 	(rocksdb.interfaces.MergeOperator method)

 	(rocksdb.interfaces.SliceTransform method)

 	
 	no_compression (rocksdb.CompressionType attribute)

 	num_levels (rocksdb.Options attribute)

O

 	
 	options (rocksdb.DB attribute)

P

 	
 	paranoid_checks (rocksdb.Options attribute)

 	partial_merge() (rocksdb.interfaces.MergeOperator method)

 	prefix_extractor (rocksdb.Options attribute)

 	
 	purge_old_backups() (rocksdb.BackupEngine method)

 	purge_redundant_kvs_while_flush (rocksdb.Options attribute)

 	put() (rocksdb.DB method)

 	(rocksdb.WriteBatch method)

R

 	
 	rate_limit_delay_max_milliseconds (rocksdb.Options attribute)

 	repair_db() (built-in function)

 	restore_backup() (rocksdb.BackupEngine method)

 	restore_latest_backup() (rocksdb.BackupEngine method)

 	rocksdb (module)

 	rocksdb.BackupEngine (built-in class)

 	rocksdb.BaseIterator (built-in class)

 	rocksdb.BlockBasedTableFactory (built-in class)

 	rocksdb.BloomFilterPolicy (built-in class)

 	rocksdb.BytewiseComparator (built-in class)

 	rocksdb.CompressionType (built-in class)

 	rocksdb.DB (built-in class)

 	rocksdb.errors.Corruption

 	rocksdb.errors.Incomplete

 	rocksdb.errors.InvalidArgument

 	rocksdb.errors.MergeInProgress

 	rocksdb.errors.NotFound

 	
 	rocksdb.errors.NotSupported

 	rocksdb.errors.RocksIOError

 	rocksdb.HashLinkListMemtableFactory (built-in class)

 	rocksdb.HashSkipListMemtableFactory (built-in class)

 	rocksdb.interfaces.AssociativeMergeOperator (built-in class)

 	rocksdb.interfaces.Comparator (built-in class)

 	rocksdb.interfaces.FilterPolicy (built-in class)

 	rocksdb.interfaces.MergeOperator (built-in class)

 	rocksdb.interfaces.SliceTransform (built-in class)

 	rocksdb.LRUCache (built-in class)

 	rocksdb.Options (built-in class)

 	rocksdb.PlainTableFactory (built-in class)

 	rocksdb.SkipListMemtableFactory (built-in class)

 	rocksdb.Snapshot (built-in class)

 	rocksdb.VectorMemtableFactory (built-in class)

 	rocksdb.WriteBatch (built-in class)

 	rocksdb.WriteBatchIterator (built-in class)

 	row_cache (rocksdb.Options attribute)

S

 	
 	seek() (rocksdb.BaseIterator method)

 	seek_to_first() (rocksdb.BaseIterator method)

 	seek_to_last() (rocksdb.BaseIterator method)

 	skip_log_error_on_recovery (rocksdb.Options attribute)

 	snappy_compression (rocksdb.CompressionType attribute)

 	
 	snapshot() (rocksdb.DB method)

 	soft_rate_limit (rocksdb.Options attribute)

 	source_compaction_factor (rocksdb.Options attribute)

 	stats_dump_period_sec (rocksdb.Options attribute)

 	stop_backup() (rocksdb.BackupEngine method)

T

 	
 	table_cache_numshardbits (rocksdb.Options attribute)

 	table_factory (rocksdb.Options attribute)

 	
 	target_file_size_base (rocksdb.Options attribute)

 	target_file_size_multiplier (rocksdb.Options attribute)

 	transform() (rocksdb.interfaces.SliceTransform method)

U

 	
 	use_adaptive_mutex (rocksdb.Options attribute)

 	
 	use_fsync (rocksdb.Options attribute)

V

 	
 	verify_checksums_in_compaction (rocksdb.Options attribute)

W

 	
 	wal_dir (rocksdb.Options attribute)

 	
 	write() (rocksdb.DB method)

 	write_buffer_size (rocksdb.Options attribute)

Z

 	
 	zlib_compression (rocksdb.CompressionType attribute)

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to pyrocksdb's documentation!

 		Instructions how to install

 		Building rocksdb

 		Systemwide rocksdb

 		Local rocksdb

 		Building pyrocksdb

 		Tutorial

 		Open

 		About Bytes And Unicode

 		Access

 		Iteration

 		Snapshots

 		MergeOperator

 		PrefixExtractor

 		Backup And Restore

 		Change Memtable Or SST Implementations

 		Change Compaction Style

 		Iterate Over WriteBatch

 		API

 		Options

 		Options object

 		CompressionTypes

 		BytewiseComparator

 		BloomFilterPolicy

 		LRUCache

 		TableFactories

 		MemtableFactories

 		Database

 		Database object

 		Iterator

 		Snapshot

 		WriteBatch

 		WriteBatchIterator

 		Repair DB

 		Errors

 		Interfaces

 		Comparator

 		Merge Operator

 		FilterPolicy

 		SliceTransform

 		Backup

 		BackupEngine

 		Changelog

 		Version 0.5

 		Version 0.4

 		Backward Incompatible Changes:

 		Version 0.3

 		Backward Incompatible Changes:

 		New:

 		Version 0.2

 		Version 0.1

